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stituted acetic acids 4 can be envisioned to involve nucleophilic 
addition of hydroperoxide anion to 9 followed by a rear­
rangement of silicon to oxygen and loss of hydroxide.15'16 This 
reaction scheme is consdnant with the observation that 4 eqUiv 
of hydrogen peroxide are required for complete oxidation of 
3 to the acid 4 and cyclohexanol.17 A more detailed mecha­
nistic study of the oxidative conversion of 3 to 4 is currently in 
progress. 
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Phenylselenolactonization. An Extremely Mild and 
Synthetically Useful Cyclization Process 

Sir: 

The halolactonization reaction is a powerful process in 
synthetic organic chemistry for regio- and stereoselective 
functionalization of olefinic bonds.1 Its application in the 
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construction of natural and unnatural products has been amply 
demonstrated.2 However, the usual requirement for aqueous, 
basic media and the rather drastic conditions required to 
convert the halolactones to useful synthetic intermediates 
impose severe limitations on this method. In addition, the in­
compatibility of a rather large number of important func­
tionalities and protecting groups with halogens decreases the 
area of applicability of this conventional procedure. The ne­
cessity for a milder lactohization method for unsaturated 
carboxylic acids, coupled with the recent successful applica­
tions of selenium reagents in organic synthesis initiated by 
Sharpless3 and Reich,4 prdmpted us to investigate these re­
agents in connection with the above problem. Herein, we de­
scribe a new method for internal lactonization of unsaturated 
carboxylic acids employing phenylselenenyl halides5 (PhSeCl, 
PhSeBr) which appears to be highly effective and can be car­
ried out in organic media under very mild conditions and low 
temperatures.6 This discovery represents one of the most facile 
and mild lactonization procedures that introduces, at the same 
time, into the molecule the phenylselenenyl moiety, a highly 
desirable group, on account of its recent and synthetically 
fertile chemistry.3-4 This is the first of several important syn­
thetic applications we have discovered for this mild cyclization 
procedure. 

This process, termed phenylselenolactonization, is exem­
plified in Scheme I. Reaction of 4-cycloheptene-l-carboxylic 
acid ( I ) ' l a with PhSeCl7 at - 7 8 0 C in dry methylene chloride 
in the presence of triethylamine proceeds rapidly and quanti­
tatively to afford the phenylselenolactone II.8 The reaction 
proceeds equally well in the presence of pyridine, or even in the 
absence of a base.9 The selenolactone II is cleanly converted 
to the saturated lactone V (85%) by Raney nickel10 in tetra-
hydrofuran (THF) at 25 0 C or to the unsaturated lactone IV 
(90%) by exposure to hydrogen peroxide (THF, 0-25 0C) via 
the selenoxide III.3'4 The exclusive syn elimination away from 
the lactone oxygen in III is in accord with previous observa­
tions3 and provides an excellent route to these important syn-
thons. 

A series of unsaturated carboxylic acids ' l a _ f was utilized 
for the lactonization studies as shown in Table I. These sub-
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Table I. Phenylselenolactonization and Useful Transformations of Phenylselenolactones 

Phenylseleno- Yield Unsaturated Yield Saturated Yield 
Entry Unsaturated acid Ref lactone (%) lactone (%) lactone (%) 

COOH 

COOH 

11a 

l ib d. 

l ie 

COOH 

CT COOH l i d 

COOH l l e 

Hf 
COOH 

PhSe 

0>» 

PhSe 

0^° 
PhSe 

100 

90 

95 

91 

93 

98 

0>° 

s , ^s o> 

90 

87 

92 

82 0>° 

85 

80 

83 

84 

76 

73 

aThe elimination of the corresponding selenoxide has not been studied in detail yet. 

stances were subjected to the phenylselenolactonization re­
action to produce a series of phenylselenolactones which were 
transformed smoothly to the saturated and unsaturated lac­
tones shown, by reduction and oxidation-elimination, re­
spectively. As indicated in Table I, good to excellent yields were 
obtained for this series of intermediates.8 

The cyclization presumably proceeds via a dipolar inter­
mediate such as VI (Scheme I) or a closely related equiva­
lent,12 which ring-closes by an internal nucleophilic attack to 
the phenylselenolactone. The ring closure is expected to pro­
ceed at the carbon able to sustain the most stable carbonium 
ion, although isomerization of the initial product to the ther-
modynamically most stable lactone could occur, in principle, 
during the reaction or during the isolation of the product.13 

Stereochemistry is tentatively assigned on mechanistic 
grounds. 

The following experimental procedure illustrates the ease 
by which the transformations referred to in Table I are carried 
out. Triethylamine (1.01 g; 10 mmol) was added to a solution 
of 4-cycloheptene-l-carboxylicacid (I)" a (1.4Og; 10 mmol) 
in dry methylene chloride (100 mL) at 25 0C and the mixture 
stirred for 30 min, cooled to -78 0C, and treated slowly with 
PhSeCl (2.11 g; 11 mmol) (30 min addition time and 30 min 
further stirring) under argon. Warming to room temperature 
followed by column chromatography (silica gel; methylene 
chloride; R/ 0.14) afforded pure selenolactone II (2.95 g; 
100%) as a colorless crystalline solid, mp 71-71.5 0C (hexane): 
IR (KBr) * w 1735 cm"1 (5-lactone); NMR (220 MHz, 
CDCl3) r 2.35 (m, 2 H, aromatic), 2.55 (m, 3 H, aromatic), 
5.33 (m, 1 H, proton adjacent to oxygen), 6.37 (m, 1 H, proton 
adjacent to selenium), 7.14 (m, 1 H, proton adjacent to car-
bonyl) 7.66-8.24 (m, 8 H, CH2); mass spectrum m/e 298,296 
(base peak), 294, 293, 292, 290 (ratio, 11:57:27:9:10:1; parent, 
characteristic family of peaks for Se due to natural isotopic 
abundance). Treatment of selenolactone II (1.475 g; 5 mmol) 
in THF (25 mL) with 30% hydrogen peroxide (0.70 mL; 7.5 
mmol) initially at 0 0C (1 h) and subsequently at 25 0C (15 

h) under argon, afforded after the usual workup34 and chro­
matography, the unsaturated lactone IV8 (640 mg; 90%). 
Reduction of II (1.475 g; 5 mmol) with Raney nickel10 (5 g) 
in THF (50 mL) was complete in 1 h at 25 0C to furnish, after 
removal of the catalyst and chromatography, the saturated 
lactone Vs (595 mg; 85%). 

To demonstrate the value of this novel cyclization process 
in sensitive cases and its potential applicability in the con­
struction of complex natural products, the highly functional-
ized cyclopentene carboxylic acids VII and VIII were syn­
thesized14 and subjected to the phenylselenolactonization re­
action, affording the phenylselenolactones IX8 and X8 in 92 
and 90% yield, respectively. These examples clearly illustrate 

COOH 

VII, R = SU-BuMe2 

VIII, R = THP 
IX, R = Si-f-BuMe2 

X, R = THP 

OSU-Bu Me, OSU-BuMe, 

the compatibility of our reaction with very important pro­
tecting groups (i.e., dithiane,15 tetrahydropyran, and silyl 
ethers16) commonly used in organic synthesis. Selective oxi­
dation of the phenylselenenyl group followed by syn elimina­
tion to the olefin XI8 was achieved (86%) using hydrogen 
peroxide (1.5 equiv) in THF, whereas, reduction with Raney 
nickel10 (THF, 25 "C) removed both the phenylselenenyl and 
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the dithiane moieties, furnishing the 7-lactone XII8 (70%). 
Compounds IX-XII represent excellent synthetic intermedi­
ates for construction of important, biologically active mole­
cules, namely, prostaglandin A2 and brefeldin A,17 and in­
vestigations directed toward these goals are currently in 
progress in our laboratories. 

The introduction of selenium reagents as initiators to induce 
ring closures offers promising avenues for forming heterocycles 
of various sizes. We are currently engaged in examining the 
mechanistic and stereochemical aspects of this reaction as well 
as exploring the synthetic utility of this process in the con­
struction of 0-lactones13'18 and macrocyclic lactones.19-20 
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Excited State Proton Transfer of a Metal Complex: 
Determination of the Acid Dissociation Constant for a 
Metal-to-Ligand Charge Transfer State of a 
Rutheniumdl) Complex 

Sir: 

We wish to report the first observation of protonation of an 
electronic excited state of a metal complex without excited 
state deactivation. This allows the first direct determination 
of the pKd of an electronic excited metal complex (pA â*). Such 
studies have been carried out for a number of organic mole­
cules,1 but there is a conspicuous absence of such information 
for excited transition element complexes. In view of the strong 
current interest in the chemistry of metal-to-ligand charge 
transfer (MLCT) excited complexes and the availability of a 
number of such systems with excited state lifetimes long 
enough for proton transfer equilibria to be established prior 
to electronic deactivation,28 pA"a* measurements for these 
systems deserve particular attention. Values of pKd* for 
MLCT states have been estimated9'10 from absorption mea­
surements but are subject to question for reasons cited 
below. 

One candidate for study is the complex Ru (2,2'-bipyri-
dine)2(2,2'-bipyridine-4,4'-dicarboxylic acid)2+, whose diester 
derivatives have recently been reported to photoassist de­
composition of water, presumably be means of photoinduced 
electron transfer from a MLCT excited state." The parent 
Ru(2,2'-bpy)32+ species and a variety of related Ru(II) com­
plexes have been extensively investigated and the results in­
dicate MLCT character for the lowest (luminescent) excited 
state.2 The close similarity in the electronic absorption and 
emission spectra of Ru(2,2'-bpy)32+, its dicarboxylic acid, and 
diester derivatives suggests the MLCT assignment for the 
lowest excited state in the latter complexes. 

We have investigated12 the excited state proton transfer 
equilibrium involving the carboxylic acid derivative and can 
now add proton transfer to the known intermolecular processes 
of excited Ru(II) complexes, which to date have only included 
electron transfer and energy transfer.13 The equilibrium 
measured is indicated in eq 1. The ground state pA"a, pA â°, can 
be determined by spectrophotometry titration, i.e., by mea­
surements of the absorption spectra as a function of pH in 
aqueous solution, Figure 1. The spectral changes are com­
pletely reversible. Isosbestic points are preserved over the entire 
pH excursion, evidencing that both -COOH groups have ap-
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